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† Dipartimento di Fisica, Università ‘La Sapienza’, P. le Aldo Moro 2, I-00185 Roma, Italy
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Abstract. The statistical properties of the length of the cycles and of the weights of the
attraction basins in fully asymmetric neural networks (i.e. with completely uncorrelated synapses)
are computed in the framework of the annealed approximation which we previously introduced
for the study of Kauffman networks. Our results show that this model behaves essentially as a
random map possessing a reversal symmetry. Comparison with numerical results suggests that
the approximation could become exact in the large-size limit.

1. Introduction

In the past decade attractor neural networks have been the subject of an intense study as a
model of associative memory. The ‘ancestor’ of these models, the Hopfield model [1], was
defined as follows. There is a set ofN neurons, each one associated with a binary variable
σi ∈ {0, 1}, i ∈ � = {1, . . . , N}, representing its activity. The synaptic couplings between
these model neurons,Jij , are chosen at random at the beginning and kept fixed, and then
the system evolves deterministically according to the equation

σi(t + 1) = sign

(∑
j

Jij σj (t)

)
(1)

(parallel updating; alternatively, one can consider sequential updating whenσi(t + 1) is
determined by the state ofσj (t + 1) for j < i and byσj (t) for j > i).

This procedure defines a disordered dynamical system: the evolution is deterministic,
but its rules are chosen at random at the beginning and kept fixed. In other words, we can
rewrite the dynamic law in the form

C(t + 1) = fJ (C(t)) (2)

whereC represents a configuration of the system, i.e. a set of values of theN variables
σi , fJ is a random realization of a deterministic map and the set of indicesJ labels the
realization of the dynamic rules.

The most natural distance in configuration space is the normalized Hamming distance,
defined as

d(C,C ′) = 1

N

∑
i

|σi − σ ′i |. (3)

We are interested in the statistical properties of the motion asymptotically in time and
system size. As the motion is deterministic and configuration space is finite, asymptotically
in time the dynamics takes place on periodic orbits, and the quantities of interest are the
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lengths and number of such orbits as well as the size of their attraction basins. Such
quantities are random variables, depending on the realization of the dynamical rules, and
we will study their probability distribution.

When the couplings are symmetric (Jij = Jji) it is possible to define a Hamiltonian
so that equation (1) represents the zero-temperature dynamics of a thermodynamic system.
In particular, if theJij are chosen from a distribution with zero mean and variance 1/N

(for instance a Gaussian distribution) we are dealing with the zero-temperature dynamics of
the SK model (in the case of sequential updating: the parallel updating does not imply a
relaxational dynamics). In the Hopfield model the couplings are also symmetric, but they
are chosen according to the Hebbian rule:

Jij =
P∑
µ=1

ξ
µ

i ξ
µ

j (4)

where theP vectors ofN binary variables,ξµ, represent the memorized patterns. The
system is able to memorize, in the sense that the patterns are fixed points of the dynamics
and they are stable against random perturbations if their number does not exceed the capacity
of the network, i.e. ifP is not larger thanαcN , with αc ≈ 0.14. So, given a number of
microscopic states growing as 2N , the Hopfield model is able to memorize a number of
patterns growing linearly withN .

Asymmetric neural networks received much attention in the literature in the late 1980s
[3–8]. In 1986 a generalization of the Hopfield model was proposed by taking into account
also asymmetric couplings [2]. This generalization appears more realistic, since synapses in
nature are in general not symmetric, and it suggests a possible way to distinguish between
a network that has remembered a learnt pattern and a network which is in a confused state
(such a distinction is not possible in the Hopfield model). In fact, in asymmetric neural
networks, two kind of attractors are present: ‘ordered’ attractors, that are either short cycles
or fixed points, and ‘chaotic’ attractors, whose length grows exponentially with system size.
The first numerical observations of this twofold nature of the attractors are due to Gutfreund
et al [5] and Nützel [9].

In this paper we are mainly interested in the study of the properties of the attractors,
such as the probability distributions of their lengths, number and size of their attraction
basins. We will only consider the case of fully asymmetric couplings, i.e.Jij andJji are
independent random variables. In this case analytical results have already been obtained
about the correlation functions [6, 7] and about the number of attractors [11], but more
about the attractors can be said by using a simple stochastic scheme based on the annealed
approximation. This approximation was introduced in the study of disordered dynamical
systems by Derrida and Pomeau [12] to study damage spreading in Kauffman networks (a
disordered dynamical system proposed as a model of the genetic regulation in cells [13]).
In [14] we showed that it can also be used to obtain information about the attractors of that
model.

A reason of interest of this study is that asymmetric neural networks are the limit case
of a one-parameter family of models, the parameterη representing the symmetry of the
synaptic couplings:

η = 〈JijJji〉〈Jij 〉2 . (5)

The caseη = 0 represents the present model (fully asymmetric couplings), while for
η = 1 the couplings are fully symmetric and we obtain the mean-field model of spin glasses.



Attractors in fully asymmetric neural networks 5615

Thus, the parameterη connects with continuity asymmetric neural networks to a disordered
system of statistical mechanics.

It was suggested through numerical simulations that the model with generic correlation
undergoes a dynamical transition whenη is changed [9, 10, 15]. The transition seems to
take place when the absolute value ofη crosses the value12. For |η| < 1

2 the dynamics
is chaotic and the typical length of the cycles increases exponentially with the number of
neuronsN , while for |η| > 1

2 the dynamics is frozen and the typical length of the cycles
does not increase with system size (most of the cycles have a length of 2, for positiveη,
and 4 for negativeη).

This transition is reminiscent of the dynamical transition taking place in Kauffman
networks. Also in that case the typical length of the cycles grows exponentially with
N in the so-called chaotic phase, remains finite in the frozen phase and grows less than
exponentially withN on the critical line [13, 14]. It was claimed by Kauffman that the
critical line of his model can be a good model of the genetic regulatory systems acting in
cell differentiation, thus showing that such systems do not need to be tuned in the very
details by natural selection but behave similarly to typical realizations of an ensemble of
random regulatory networks [13]. It is possible that, analogously, also the supposed critical
point in attractor neural networks, where chaotic and ordered cycles coexist, can suggest
something interesting from a biological point of view. We think that our method can be
modified to give information about systems with generic asymmetry and about the supposed
phase transition that they undergo, though this probably requires going beyond the annealed
approximation.

2. Closing probabilities

2.1. General framework

Our strategy for the study of attractors in disordered dynamical systems has as its starting
point the probability distribution of the distance at different time steps. Actually, the
information contained in the distribution of the distance is much more than what we need
and this distribution is in principle a very complicated object, so that our approach may
seem to complicate the problem. But, in some cases, the distance can be well approximated
by a suitably defined stochastic process and the computation becomes much easier. The
simplest possibility is to approximate the distance with a Markovian stochastic process.
This is what we call here theannealed approximation.

An apparently paradoxical aspect of this approach is that in disordered dynamical
systems attractors exist due to the fact that the motion is deterministic. Stochastic processes,
on the other hand, have nothing similar to a limit cycle. Nevertheless, all the properties
of the attractors can be derived from the distribution of distances, which is a well defined
object in both kinds of models. We cannot pursue this analogy up to times larger than the
time of first recurrence of a configuration already visited, when the deterministic motion
becomes periodic. But this is enough, since the first recurrence provides us with every
information about the length of the cycles and the transient time.

The fundamental object of our study will then be the distribution of distances between
configurations at time stepst and t ′ > t on the same trajectory, restricted to trajectories
that have not yet visited twice any configuration up to the larger timet ′ (thus the effects of
periodicity do not yet appear). We will call this condition the opening condition, and denote
it by the symbolAt ′ . The closing probabilityπN(t, t ′) is the probability that configurations
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at time stepst and t ′ are equal (d(t, t ′) = 0), subject to the opening condition:

πN(t, t
′) = Pr{d(t, t ′) = 0|At ′ } (6)

(the subscriptN is there to remind us of the dependence on system size).
After the closing timet ′ the trajectory enters a periodic orbit of lengthl = t ′ − t ,

where t is the transient time. In terms of the closing probabilities, the probability to
find such a trajectory is easily computed. First we have to know the probabilityFN(t)

that the trajectory was not closed before timet ′ = t + l. This obeys the equation
FN(t + 1) = FN(t)(1−

∑t−1
t ′=0πN(t

′, t)), whence, introducing a continuous time variable,
we obtain

FN(t) = exp

(
−
∫ t

0
dt ′
∫ t ′

0
dt ′′ πN(t ′, t ′′)

)
(7)

(to have a slightly simpler formula we made the hypothesis that the typical closing times
are long, which is normally the case in the chaotic phase, where they grow exponentially
with system sizeN , and we transformed the sum into an integral).

The probability of finding a trajectory that, after a transient timet , enters a cycle of
length l is then obtained by multiplyingFN(t + l) by the closing probabilityπN(t, t + l).

2.2. The annealed approximation

Regarding the distance as a Markovian stochastic process is a very drastic approximation.
In our case it sounds reasonable when the temporal distancel is large, since the model that
we study is known to have a behaviour very reminiscent of chaos [15]. However, in this
way we neglect some memory effects, which can play a fundamental role in systems with
non-zero symmetry.

This approximation was first used in this context by Derrida and Pomeau [12], who
studied the damage spreading in Kauffman networks. They showed that the average value
of the Hamming distance between two different trajectories is equivalent, in the infinite-
system limit, to the average value of the Markovian stochastic process obtained by extracting
new dynamical rules at every time step and remembering only the value of the distance
at time stept − 1. Thus, the disorder is treated as annealed rather than as quenched. In
other words, instead of considering an ensemble of trajectories, each one taking place on a
fixed realization of the dynamical rules, they consider an ensemble of trajectories moving
from one realization of the dynamical rules to another one, in the same spirit in which the
annealed average is used for disordered thermodynamical systems.

The above procedure can be shown to exactly describe the evolution of the average
distance up to a time of order logN in disordered systems with finite connectivity [16, 17],
but we think that its validity is more general. In systems with infinite connectivity such as
the one that we are studying here, or when one is interested in the whole distribution of the
distance, the equivalence between the two dynamics has not been proved, and we have to
assume that a typical trajectory of the quenched system loses memory of the details of the
realization of dynamical rules under which it evolves. In the random map model [18] this
is trivially true. In other cases this can be thought of as a maximal ignorance hypothesis,
whose consequences must then be compared with numerical simulations.

Let us state some of these consequences. A Markovian stochastic process, if its transition
probability is ergodic†, converges to a stationary stochastic variable independent of the initial

† In the present case, in order to have an ergodic transition probability, we must first exclude the distanced = 0
which is an absorbing point (ifd(t, t + l) = 0, we must have with a probability of 1d(t ′, t ′ + l) = 0 for every
t ′ > t), that is we have to impose the condition that the trajectory is not yet closed, as we did.
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distribution. This means that the closing probabilityπN(t, t + l) converges to a stationary
valueπ∗N . This is also independent ofl if the transition probability does not depend on this
quantity. We will show that this happens in the present case, at least forl large enough.

It is then easy to compute the probability of a trajectory which, after a transient time
t , enters a cycle of lengthl (with l and t large enough, so that the closing probability has
reached its asymptotic value): using the results of last section, we obtain

Pr{T = t, L = l} = 1

τ 2
N

exp

(
−1

2

(
t + l
τN

)2
)

(8)

whereτN = π∗N−1/2 is the typical timescale of the problem, in the sense that the random
variable t/τN has a well defined density of probability even in the limit whereτ goes to
infinity. All the dependence on system size is contained in the factorπ∗N , which is expected
to decrease exponentially withN in the chaotic phase. For instance, for a uniform random
map [18], which is the most chaotic disordered dynamical system, it holds thatπ∗N = 1/2N ,
and consequently the typical timescale of the attractors grows as 2N/2.

The properties of random maps can be easily generalized starting from equation (8). An
interesting quantity is the distribution of the attraction basin weights. This was analytically
computed by Derrida and Flyvbjerg [19] for the case of the uniform random map. The
weight of the attraction basin of cycleα, Wα, is defined as the probability to extract
at random an initial configuration which will asymptotically reach the attractorα. The
statistical information about the distribution of the weights can be expressed through the
‘moments’〈Yn〉, defined as

〈Yn〉 =
∑
α

〈Wn
α 〉. (9)

Y1 = 1 due to the normalization of the weights andY2 represents the average weight
in a given dynamical system. Its extreme values, 1 and 0, correspond respectively to the
‘ergodic’ case where there is only one relevant attractor and to the case where there is an
infinite number of relevant attractors, while a finite value ofY2 means that there is a finite
number of attractors with non-vanishing weight. This quantity fluctuates from sample to
sample, so it is necessary to consider an average over the realizations of the dynamical
rules, that is represented by the angular brackets.

The method used in [19] to compute the distribution of the weight can be applied without
modifications to all disordered dynamical systems where the closing probability reaches an
asymptotic value,π∗N , and the results do not depend on this value in the large-size limit.
Thus the distribution of the attraction basin weights isuniversal for all the disordered
dynamical systems where the closing probability reaches a stationary value [14, 21], apart
for systems which possess some symmetry. The result for the average value of theYn is
[19]

〈Yn〉 = 4n−1[(n− 1)!] 2

(2n− 1)!
. (10)

The fluctuations from sample to sample can also be computed. For example the
fluctuations ofY2 are measured by〈Y 2

2 〉 − 〈Y2〉2, and do not cancel even in the infinite-size
limit N →∞.

The average number of attractors of lengthl can be computed starting with the relation

〈na(l)〉 = 2N

l
Pr{T = 0, L = l}. (11)
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In this formula, the probability Pr{L = l, T = 0} should be computed by multiplying
FN(l), given in equation (7), by the closing probabilityπN(0, l). This is different from the
asymptotic value (for larget) of πN(t, t + l). According to the hypothesis, on which the
annealed approximation relies, that the system is going to forget the details of the evolution,
we expect no correlations between the initial configuration and a configuration at a large
time l or, in other words, we expect the closing probability to be, asymptotically inl,
πN(0, l) = 1/2N . For chaotic Kauffman networks this can be explicitly computed in the
framework of the annealed approximation, which is then consistent under this point of view.
Moreover, in this case we findπN(0, l) = cl1/2N , wherecl does not depend onN . Thus
it holds

〈na(l)〉 ≈ cl

l
exp(−l2/2τ 2). (12)

Summing overl we obtain the average value of the total number of cycles, whose
leading term inN is equal to logτN . Since in the chaotic phase the timescale grows
exponentially with system size, the number of attractors is proportional toN in this case.
This computation holds for chaotic Kauffman networks in the framework of the annealed
approximation, but we expect it to hold more generally under the hypothesis discussed
above.

2.3. Master equation

The general scheme described above must be modified in the case studied in this paper,
to take into account the symmetry of the problem. Let us define the reversal operator,R,
which reverses all the spins. This operator commutes with the dynamics of the system.
Using the notation defined in equation (2), we can write:

fJ (RC) = RfJ (C). (13)

This implies that we can define two different closing times.
(1) The first timet whenC(t) is equal toC(t + l).
(2) The first time whenC(t + l) is equal toRC(t): then equation (13) implies

C(t + 2l) = C(t). In other words, the trajectory has reached, after a transient timet , a
cycle of length 2l.

These closing events can be described in terms of the Hamming distance between
configurations: the first one corresponds tod(t, t+l) = 0, while the second one corresponds
to d(t, t + l) = 1. Thus two closing probabilities must be defined:

π
(0)
N (t, t ′) = Pr{d(t, t ′) = 0|At ′ } (14)

π
(1)
N (t, t ′) = Pr{d(t, t ′) = 1|At ′ } (15)

and the opening condition,At , has the meaning that up to timet it never occurred for either
d(t1, t2) = 0 or d(t1, t2) = 1. Our task is now to compute the master equation for the
distribution of the distance under the opening condition (this means that we consider only
trajectories not yet closed) and under the hypothesis that the distribution ofd(t + 1, t ′ + 1)
depends only on the distribution ofd(t, t ′). This is not a difficult task. To simplify the
formulae slightly we will consider, instead of the distance, the overlapq = 1− d, which
is measured by the number of elements whose state is the same in the two configurations,
divided byN .
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An elementσi is in the same state at timet +1 andt ′ +1 if its local field has the same
sign at time stepst and t ′. Thus it holds

σi(t + 1)σi(t
′ + 1) = sign

(∑
jk

Jij Jikσk(t)σj (t
′)
)
. (16)

Let us consider separately the contribution to this sum coming from the spins whose
state is the same at time stepst and t ′, whose number isNq(t, t ′), and that belong to a set
that we indicate with the nameI (t, t ′). We can then write

σi(t + 1)σi(t
′ + 1) = sign((h+i (t))

2− (h−i (t))2) (17)

where

h+i (t) =
∑

j∈I (t,t ′)
Jij σj (t)

h−i (t) =
∑

j∈�/I (t,t ′))
Jij σj (t).

(18)

The annealed approximation consists of considering the local fields as random variables,
correlated to the previous story of the system only through the value ofq(t, t ′). In this
spirit, we consider a dynamics in which the local fields are extracted at random at every
time step, under the following assumptions.

(1) The local fields at different points are independent random variables.
(2) The value ofσj (t) is independent on the synaptic couplingJij .
Both of these assumptions encounter troubles when the synaptic couplings are correlated

with each other, but they are quite reasonable forη = 0, which is the case that we are
studying now. Assumption (1) implies that the transition probability is a binomial one:

Pr{q(t + 1, t ′ + 1) = qn|q(t, t ′) = qm} =
(
N

n

)
(γ (qm))

n(1− γ (qm))N−n (19)

whereqn = n/N , andγ (q) is the probability that|h̃+(q)| > |h̃−(1− q)|, where, following
assumption (2),̃h±(q) is a Gaussian variable with mean value zero and varianceq (this result
is independent on the details of the distribution of the couplings, provided that they are all
independent variables with mean value zero and with the same variance). A straightforward
computation shows that

γ (q) = 2

π
arcsin

√
q. (20)

The Markov process associated to this transition probability is ergodic if we exclude the
valuesq = 0 andq = 1 as starting points, as we do imposing the opening condition, and
the distribution of the distance evolves towards a stationary distribution. Moreover, since
the transition probability is independent onl = t ′ − t , also the stationary distribution is
independent onl, which only appears in the initial distribution of the variableq(0, l). It is
also evident from the symmetry of the problem that it must holdγ (q) = 1− γ (1− q), so,
if the initial distribution is also symmetric (e.g. a binomial distribution aroundq = 1

2), the
overlap distribution will be symmetric at every time step and it will be concentrated around
the valueQ(t, t ′) = D(t, t ′) = 1

2 (the distributions of the overlap and of the distance are
perfectly equivalent in this case). The stationary distribution is, independently on the initial
one, concentrated around the valueQ∗ solution of the self-consistent equation:

Q∗ = γ (Q∗) = 2

π
arcsin

√
Q∗. (21)
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This equation has three solutions:1
2, 1 and 0, but only the first one can be accepted,

according to the criterion|γ ′(Q∗)| < 1, which can be obtained either as the stability
condition of the fixed pointQ∗ of the mapQ(t+1, t ′ +1) = γ (Q(t, t ′)), or as the condition
that the variance of the stationary distribution is positive (see equation (25) below).

Equation (21) is equivalent to the equation for the stationary value of the correlation
function rigorously derived in [6] through a functional integral approach, so that one can
see from this comparison that the annealed approximation gives an exact (though trivial)
result concerning the average overlap. But our task here is to compute the whole stationary
distribution of the overlap, and we cannot prove that the annealed approximation is correct
to this extent, so we have to rely upon simulations to control its validity.

Although it is concentrated aroundQ∗ = 1
2, the stationary distribution is much broader

than a binomial one and thus the closing probability is exponentially larger than 1/2N . In
order to compute its value, we proceed in this way [14]. Since the transition probability is
exponentially concentrated, we look for a solution of the form:

PN(q(t, t
′) = qn) = CN(qn, t)exp(−Nαt(qn)) (22)

where we have dropped thel dependence of the probability, which disappears at stationarity.
Using Stirling approximation for the binomial coefficient and the saddle-point approximation
to average over the distribution at time stept − 1, we obtain the following equation for the
evolution of the exponent of the distribution,αt(x):

αt(x) = αt−1(qt (x))+ x log

(
x

γ (qt (x))

)
+ (1− x) log

(
1− x

1− γ (qt (x))
)

(23)

where the functionqt (x) must be determined self-consistently solving the equation

α′t−1(qt (x))− γ ′(qt (x))
(

x

γ (qt (x))
− 1− x

1− γ (qt (x))
)

(24)

with the conditionsqt (x) > 0 andqt (x) < 1.
At stationarity the most probable overlap (the point whereαt(q) has a minimum) is

given by equation (21), and the variance of the distribution can be obtained by taking the
second derivative of equation (23) and solving it together with the first derivative of the
saddle-point condition (24). The result is

V ∗ = Q∗(1−Q∗)
1− (γ ′(Q∗))2 =

1
4

1− (2/π)2 ≈ 0.4204 (25)

whereV ∗ is the variance of the stationary distribution multiplied byN . Thus, the variance
is larger than in the case of a binomial distribution, since the dynamics has produced
correlations between different elements.

The value of the closing probability cannot be computed analytically: for this we need
the whole functionα(x), and to obtain it we should solve a transcendent non-local equation.
Thus we had to numerically solve equation (23), obtaining the stationary distribution
reported in figure 1. The asymptotic closing probability, defined asP ∗N(q = 1)+P ∗N(q = 0),
is thus

π∗N = 2 exp(αN) (26)

with α = 0.4554. As discussed in the previous section, the exponent of the average length of
the cycles should be equal toα/2. This prediction is in good agreement with the numerical
simulations that will be reported in section 4.
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Figure 1. Exponentα(q) computed from the equationPN(q) = CN(q) exp(−Nα(q)), where
PN(q) is the stationary overlap distribution, with bothq = q(t, t + 2) (diamonds) and
q = q(t, t + 32) (triangles). The full curve shows the annealed prediction. The agreement
is better in the second case, when the temporal distance between configurations is larger. The
system size isN = 20 andh = 0.

2.4. Initial distribution

In order to compute the average number of cycles we have to know the distribution of the
overlap with the initial configuration,q(0, l), which plays the role of the initial distribution
for the stochastic process studied in section 2.3. Although the number of cycles in fully
asymmetric neural networks was exactly studied by Schreckenberg [11], we want to sketch
the annealed computation of it, since it is much simpler and it can be generalized to more
complex situations.

Our aim is to compute the distribution ofq(0, l). After one time step the annealed
approximation is exact (we still have to extract all the couplings) and trivial: every spin can
be either in its initial state or in the reversed one with a probability of1

2, and the overlap
q(0, 1) multiplied byN has a binomial distribution withp = 1

2. After two time steps we
distinguish two contributions in the local field: one coming from the setI1 of the spins
which are in the same state att = 0 and att = 1 and the other coming from all the other
spins. We write

σi(0)σi(2) = sign

(∑
j∈I1

σi(0)Jijσj (0)−
∑
j∈�/I1

σi(0)Jijσj (0)

)
. (27)

Since the statesσi(0) and σj (0) are independent both one on each other and on the
couplings, we can set them equal to 1. If we change the sign of the last sum, we
obtainσi(0)σi(1). Thus, depending on whether this is positive or negative, there are two
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possibilities:

σi(0)σi(2) =


sign

((∑
j∈I1

Jij

)2

−
( ∑
j∈�/I1

Jij

)2)
if σi(0)σi(1) > 0

sign

(( ∑
j∈�/I1

Jij

)2

−
(∑
j∈I1

Jij

)2)
if σi(0)σi(1) < 0

(28)

(in this formula there is indeed a small imprecision, which becomes negligible in the infinite-
size limit: since the couplingJii is set equal to zero, we do not have to take into account
the spinj = i itself, which contributes to the first sum in both lines). The probability
that the sum ofn Gaussian variables has a module larger than that of the sum ofN − n
other Gaussian variables was computed in the previous section, where it received the name
γ (n/N). Taking all of this into account, we come to the transition probability

Pr{q(0, 2) = m/N |q(0, 1) = n/N}
=
∑
k

(
n

k

)(
N − n
m− k

)
(γ (n/N))N−n−m+2k(1− γ (n/N))n+m−2k (29)

where, as usual, the opening condition imposes to exclude as starting pointsn = 0 and
n = N , and the sum runs over all the values ofk for which the factorial is well defined.
The closing probability which can be deduced from this formula setting eitherm = N or
m = 0 coincides with the one exactly computed in [11]. It can easily be seen that it is
proportional to 1/2N , as expected (the system loses memory of the initial configuration quite
fast), and the proportionality coefficient can be computed with the saddle-point method [11].

In the general case, the information aboutq(0, l) is not enough to compute the
distribution of q(0, l + 1): we also have to know the value ofq(0, 1), as it can be seen
from equation (28) where we have to substitute 1 withl and 2 withl+1 into the equations
but we have to rememberσi(0)σi(1) in the conditions. In the general case the transition
probability has thus the form

Pr{q(0, l + 1) = m/N |q(0, 1) = n1/N, q(0, l) = n/N}
=
∑
k

(
n1

k

)(
N − n1

m− k
)
(γ (n/N))N−n1−m+2k(1− γ (n/N))n1+m−2k (30)

and we have to consider the evolution of the joint distribution of the variablesq(0, 1) and
q(0, l). As expected, the correlations between these two variables vanish very fast asl

grows, and the stationary distribution is the product of two binomial distributions, as it can
be easily checked, so that for largel the closing probability isπ(a)N (0, l) = 1/2N (with a
equal to either 0 or 1), consistently with the supposed loss of memory and in agreement
with the exact results of [11]. For small values ofl it can be seen thatπ(a)N (0, l) = cl/2N ,
wherecl goes to a finite value in the infinite-size limit, so that the total number of cycles
increases only proportionally to the system size.

3. Reversal symmetry

The computations shown in section 2.2 must be modified to take into account the twofold
nature of the closing probability. We have to distinguish between two kinds of cycles, with
different properties under the reversal operation.

(1) Cycles that close whenC(t + l) = RC(t) (or, in other words,q(t, t + l) = 0), whose
length is 2l. They are invariant under the reversal operation: each configuration is present
together with its reversed one.
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(2) Cycles that close whenq(t, t + l) = 1. In this case the reversal operator applied to
the cycle0 produces a new cycleR0 with equal length and equally large attraction basin.

Taking this into account, we have to distinguish between cycles of even length, which
can be of one of the two kinds, and cycles of odd length, which can only be of the first
kind. Cycle length distribution is then

Pr{T = t, L = l} = 1

2τ 2
exp

(
− (t + l)

2

2τ 2

)
l odd (31)

= 1

2τ 2
exp

(
− (t + l)

2

2τ 2

)
+ 1

2τ 2
exp

(
− (t + l/2)

2

2τ 2

)
l even (32)

with τ = 1/
√
π
∗ = 1/

√
2 exp(0.2277N).

The cycles of the first type have only even length, so that their number is half of the
number of the cycles of the second type. Using the result of section 2.2 and summing up
the contributions of both types of cycles we obtain, at the leading order inN ,∑

l

〈na(l)〉 ≈ 3
2 logτ = 3

4αN (33)

which is 3
2 times larger than in a random map with the same closing probability.

The most important difference between attractors in asymmetric neural networks and in
a random map involves the distribution of the attraction basins weights. Let us consider
separately cycles of the first type and cycles of the second type (taking only one cycle to
represent each pair of cycles of the second type). We then obtain the expression of the
moments〈Yn〉 of the distribution of the weights:

〈Yn〉 = 1
2

〈∑
α′
Wn
α′ + 2

∑
α′′
(Wα′′/2)

n

〉
(34)

where the sum overα′ and α′′ of the weights are both normalized to one. Under the
hypothesis that each of the two sets of weights is distributed as in a random map, we obtain

〈Yn〉 =
(

1

2
+ 1

2n

)
〈Yn〉RM (35)

or, using (10),

〈Yn+1〉 = 1

2

(n!)2

(2n+ 1)!
(4n + 2n). (36)

Thus the moments of the distribution of the weights are smaller than in the usual random
map, for instance〈Y2〉 = 1

2 instead of 2
3. These results are in very good agreement with

numerical simulations.
To prove equation (35) let us recall that〈Yn〉 can be interpreted as the probability that

n randomly chosen trajectories reach the same attractor. We can compute such a quantity
by using the closing probabilities and following exactly the same lines as in [19], but we
have to remember that a closing event has two different meanings: either a closure on an
identical configuration (q = 1) or a closure on a reversed configuration (q = 0). Thus, not
all of the events which represent the closure of then trajectories, and whose probability
is exactly〈Yn〉RM , have the meaning that the trajectories will ultimately meet. If the first
trajectory closes withq = 0 (this happens with a probability of12), its attraction basin also
contains all of the reversed configurations, and the followingn− 1 trajectories which close
on it will then go to the same attractor, regardless on how they close. In contrast, if the
first trajectory closes withq = 1, the followingn − 1 trajectories also have to close with
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q = 1 in order to go to the same attraction basin (if they close withq = 0, they go to the
reversed basin). In this case, whose probability is again1

2, a closing event is equivalent to
an asymptotic meeting of then trajectories only with a probability of 1/2n−1. Equation (35)
is thus proved.

3.1. Explicit symmetry breaking

The above picture of the distribution of the attraction basins weights is completely destroyed
by the introduction of a magnetic field, however small, in the equations of motion (1), which
restores the distribution typical of a random map. We considered the dynamic rules

σi(t + 1) = sign

(∑
j

Jij σj (t)− h
)
. (37)

The magnetic fieldh has the biological meaning of the threshold of activation of the
neurons. In real neurons, such a non-zero threshold exists and can be different from one
neuron to another one. In our simplified model, we take a threshold which is constant
among the different neurons. Its introduction explicitly breaks the symmetry respect to the
reversal of all the neural activities.

In the framework of the annealed approximation, the conditional probability that the
activity of a neuron is the same in two different time steps is not more symmetric, i.e.
γ (1− q) is different from 1− γ (q) and γ (1) increases very rapidly with respect to the
above case, thus making a reversed closure very unlikely, whileγ (0) decreases. After a
straightforward calculation we obtain

γ (q) = 1− 2

π

∫ π/2

arcsin
√
q

exp

(
−1

2
(h/ sint)2

)
dt. (38)

For a large threshold the closing probability differs from 1 by a value that cancels very fast,
as exp(−h2/2).

The attractors of the first type (such that0 = R0) are completely destroyed in this way,
while attractors of the second type do not live in pairs any more, and the distribution of the
weights is of the random map type.

4. Numerical results

4.1. Distribution of the overlap and closing probabilities

Our first aim was to compare the distribution of the overlap predicted by the annealed
approximation with the same distribution in the quenched system. As we wrote, the analogy
holds if we measure the overlap between configurations only along the trajectories that are
not yet closed when we do the measurement. Under this condition, we computed the
distribution of the overlapq(t, t + l) for l fixed and t large enough to suppose that the
distribution has attained stationarity.

The exponentα(q) of the distribution of the overlap is defined by the equation
PN(q) = CN(q) exp(−Nα(q)), where the factorCN(q), proportional to 1/

√
N , comes

from the Stirling expansion of the binomial coefficient. Thus we computedα(q) by using
the formula

α(q) = − 1

N

(
log(PN(q))+ 1

2
logN

)
. (39)
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The logarithmic term must not be subtracted whenq is equal to 0 or 1, because in this case
the 1/

√
N factor is no more present in the expansion of the binomial coefficient, and so

we did not consider it forq = 0 and 1, interpolating linearly between the two formulae for
values ofq between 0 and 0.1 and between 0.9 and 1. In such data analysis we neglect
terms of order 1/N (there is also an unknown coefficient in the expression of the probability
P(q)), and the agreement between the annealed prediction forα(q) and the quenched data,
compared in figure 1, is then very satisfactory even for a system of such a small size (we
consideredN = 20). Whenl, the temporal distance between configurations, is small, there
are some discrepancies (for instance, forl = 2 the quenched distribution is much broader
than expected, and the closing probability is consequently much higher), but whenl is large
the agreement improves (in particular, the variance of the distribution and the exponents
α(0) and α(1) of the closing probabilities coincide within the errors with the predicted
values). This fact sustains our interpretation that the annealed approximation is valid when
the temporal distance is large, so that the system has forgotten the details of its evolution
[14, 21].

Next we measured the closing probabilityπN(t, t + l). figure 2 represents this quantity
as a function oft for different values ofl, kept fixed. The statistic errors are large, but it
appears thatπ(t, t + l) reaches a value approximately stationary int , in agreement with the
annealed prediction, whenl is large (in figure 2(b) we havel = 11) but whenl is small (in
figure 2(a) l = 2) the closing probability reaches a maximum value and then decreases, as
a function oft . We already observed this kind of non-monotonic behaviour of the closing
probabilities in simulations of Kauffman model. In both cases we interpret the decreasing
part ofπ(t) as due to the opening condition: the condition that the trajectory is not closed
at time t selects, ast grows, trajectories that are more and more unlikely to close. The
opening condition cannot be imposed in the annealed scheme, because we consider the
stochastic processd(t, t + l) with l fixed and we cannot controld(t, t ′) for generict and
t ′. So the annealed scheme must be modified to take this fact into account [14]. But in
asymmetric neural networks, differently from what we observed in Kauffman networks, the
opening condition seems to be irrelevant when the temporal distancel is large, and the
closing probability appears to reach, in this case, an approximately stationary value.

The non-stationarity of the distribution ofq(t, t + 2) shows the existence of memory
effects in the model: the statistical properties ofq(t, t + 2) still depend ont , even after
an arbitrarily long transient time. It would be interesting to find out whether the lack of
time translation invariance in the system with completely uncorrelated couplings has some
relation with aging in the relaxational dynamics of the SK spin glass model [22]. In the
present case, however, the lack of time translation invariance is only a minor effect and
does not prevent the overlapq(t, t + l) from reaching a stationary distribution forl large
enough. The macroscopic properties of the dynamics can be predicted, in good agreement
with numerical results, also neglecting this effect at all.

We conclude this section by showing a plot of the integral closing probabilityπ̃N (t),
defined as

π̃N (t) =
t−1∑
t ′=0

πN(t
′, t) (40)

this is the probability that a trajectory not closed at timet−1 closes at timet). In Kauffman
networks, this quantity is non-monotonic as a function oft : it increases to a maximum value
and then decreases witht . On the other hand, from the annealed approximation we would
expect it to increase linearly witht in the stationary state. In asymmetric neural networks we
found that the integral closing probability increases monotonically witht . After a transient
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Figure 2. Closing probabilityπN(t, t + l) as a function oft , for (a) l = 2 and (b) l = 11. The
system size isN = 20 with h = 0.

phase of very fast increase it slows down, and asymptotically it appears to behave as a
power law. For the largest systems that we simulated our data are very noisy, and we could
fit the asymptotict behaviour only forN = 20, finding that the best fit exponent of the
power law is approximately 0.6. So, at least for systems of not very large size, deviations
from the annealed approximation are also present in this case.

4.2. Properties of attractors: Zero threshold

To obtain the first three moments of the distribution of the attraction basins we followed
the method indicated in [20]. For every value of the parametersN andh = 0 we generated
at random 2000 networks, extracting the synaptic couplings with Gaussian distribution, and
we simulated four randomly chosen trajectories on each of them.
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Figure 3. Integral closing probability,πN(t) =
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′, t) as a function oft in a system of
size 20 withh = 0.
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Figure 4. Moments of the distribution of the attraction basin weights versus system sizeN for
h = 0: 〈Y2〉 (diamonds);〈Y 2

2 〉 (squares);〈Y3〉 (triangles) and〈Y4〉 (stars). The dotted lines show
the predictions of the annealed approximation.

The average weight of the basins,〈Y2〉, was estimated from the probability that two
different trajectories end up on the same periodic orbit. In general [20],〈Yn〉 can be
measured as the probability thatn different initial configurations evolve to the same attractor.
Simulating four initial configurations it is also possible to measure〈Y 2

2 〉 as the probability
that each of two pairs of configurations end up on a same attractor, the two attractors being
either different or equal.

Figure 4 shows data which report the behaviour of the moments of attraction basin
distribution for systems of different size,N . It can be seen that they rapidly converge to
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Figure 5. Average length of the cycles as a function of system size forh = 0.

the predictions of the annealed approximation, corrected to take into account the reversal
symmetry.

The average cycles length increases exponentially with system size,〈L〉 ∝ exp(αL/2N).
The exponentαL/2 is less than log 2/2 = 0.347, as it would be in a completely random
map. Its valueαL/2 = 0.224 is in good agreement with the prediction of the annealed
approximation,α/2 = 0.228 (the small discrepancy could be a finite-size effect, as
the exponent estimated from numerical data increases when only the largest systems are
considered). Figure 5 shows the average length of the cycles versus system size.

The distribution of cycle length is much broader than expected on the basis of the
annealed approximation, and asymptotically behaves as a stretched exponential:

Pr{L > l} ≈ exp(−(l/τN)γN ). (41)

As discussed in the previous sections, the distribution is different for the two different
types of cycles. We considered only odd cycles, in order to select only attractors of the
second type, and we checked that the scale of the distribution,τN , increases exponentially
with N , τN ∝ exp(αP /2N), where the exponentαP coincides withαL within the errors.
On the other hand, the exponentγN of the stretched exponential, for which the annealed
approximation predicts the value 2, is instead less than 1 for all of the system sizes that we
examined, but it appears to increase slightly asN grows (though are data about this point
are very noisy), so that it is possible that this discrepancy shall disappear in the infinite-size
limit.

The fact that we findγN to be less than 1 also appears challenging because the
distribution of the closing time (i.e. the sum of the transient time plus the length of the
cycle), which should have the same behaviour of the distribution of cycle length, according
to the annealed approximation, is indeed much steeper: it can be fitted to a stretched
exponential of the same form (41), but with a much larger exponentγ ′N . For instance, for
N = 20, we findγ ′N = 1.9, in good agreement with the annealed prediction, while the value
of γN is 0.69.
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Figure 6. Moments of the distribution of the attraction basin weights versus system sizeN for
h = 0.1: 〈Y2〉 (diamonds);〈Y 2

2 〉 (squares);〈Y3〉 (triangles) and〈Y4〉 (stars). The dotted lines
show the predictions of the annealed approximation.

4.3. Properties of attractors: Broken symmetry

When we consider the evolution equation (37) with a thresholdh, the reversal symmetry
is explicitly broken and the distribution of the weights is the same as in the usual random
map.

Figure 6 shows the behaviour of the first moments of the distribution of the weights
as a function of system sizeN for h = 0.1. Such a threshold is so small that it modifies
the value of the exponentα by less than 2%: the annealed approximation predicts in this
caseα = 0.448, to be compared with the value of 0.455 found with zero threshold. The
prediction is in good agreement with numerical simulations: a fit of the average length
of the cycles givesαL = 0.44. For such a small threshold we can observe traces of the
broken symmetry present as finite-size effects: the moments of the distribution at smallN

fall below the random map values, even if of a very small amount, and then increase to
those values, which are maintained asymptotically in system size.

On the other hand, when the threshold is larger, we do not see at all the signs of the
symmetry on the distribution: forh = 1, the average basin weight decreases monotonically
from the value 1 at smallN towards the random map value〈Y2〉 = 2

3. For such a threshold
the average length of the cycles still behaves exponentially withN , but the exponentα
is very small and power law corrections also have important effects for systems large to
simulate, as it appears from the fact that the best fit exponent depends significantly on
system size (it decreases as system size increases), and we could not estimate it accurately.
Nevertheless, the agreement between the annealed approximation, which predictsα = 0.128,
and the numerical resultαL = 0.15, is worse than in the previous cases but is still not bad.

5. Summary and conclusions

In this work we used a stochastic scheme, based on the closing probabilities and on
their approximation by means of a Markovian stochastic process, in order to compute
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the properties of the attractors in fully asymmetric neural networks. The fundamental
hypothesis behind this approximation is that the system forgets fast enough the details
of its past evolution, so that a one-step memory is already enough to describe the gross
features of the dynamics. Our method is able to predict very satisfactorily theN behaviour
of the typical lengths of the cycles and typical transient times, the number of cycles, the
distribution of their attraction basin weights and also the main features of the distribution
of the distances. On the other hand, the approximation fails to predict the shape of the
distribution of cycle length, which is much broader than we would expect.

The average number of cycles has already been exactly computed, and perhaps other
quantities can be exactly computed in this model, but the present method has the advantage
of being very simple, and we hope that it can be applied to more complex situations.
In particular, with this method we argue that the distribution of attraction basins is, for
disordered dynamical systems that are ‘chaotic enough’, always equal to the one computed
by Derrida and Flyvbjerg [19] for the case of a uniform random map.

A possible extension of our method, that we consider to be very interesting and that
we plan to pursue further, is towards the study of neural networks with finite symmetry.
Numerical studies suggest that such systems undergo an abrupt change of dynamical regime
when the symmetryη is changed [9], but a ‘mean field’ description of this transition
from an ordered behaviour to chaos is still lacking. The possibility that such a change
can be characterized as a transition between memory and loss of memory is very appealing.
Memory effects are more and more important for networks with non-zero coupling symmetry
(until the well known aging properties of the SK model are approached). Because of these
effects, it is necessary to modify our method to also study the chaotic regime of the model
(low symmetry). Technically this is not an easy task, since non-zero symmetry correlations
arise both between the local fields (see equations (18)) of different neurons and, more
difficult to treat, between synaptic couplings and dynamical variables. The latter introduce
an effective interaction between the state of an element at two different time stepst and
t +2, so that in the dynamics also an effective gradient flow is present, and, if the annealed
approximation can describe this situation, it will be necessary to take into account also this
information, aside the crude distance, to make the annealed scheme useful.

Studying this family of models it is also possible, by varying the continuous parameters
η andh, to go from the distribution of the attraction basins typical of the random map to
the one typical of spin glasses, thus the study of the general model would shed some light
on the relation between the two kinds of distributions.

Memory effects are probably responsible of the discrepancy between the prediction
of the annealed approximation and the observed distribution of cycle length. In fact, the
distanced(t, t ′) does not reach a stationary distribution, if we impose the condition that the
trajectory is not yet closed before the measure. We think that this condition, which cannot
be imposed in our computation, selects trajectories that are less and less likely to close.
As a result, the integral closing probability, which is our main tool in the computation,
increases as a function oft slower than expected. It is possible that this effect shows up
only at smalll and disappears in the infinite-size limit (a suggestion of this could be the fact
that the distribution of cycle length decays faster in this limit), but it is also possible that,
as in the case of the Kauffman model that we previously studied, some corrections to the
annealed picture are necessary also in the infinite-size limit. However, we think that these
results show that the annealed approximation is a useful tool to investigate the properties
of attractors in disordered dynamical systems in a simple way.
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